 DOCUMENTS |

| K GVTDOC

D 211.

Bethesdu, Mnrylond 20034

,,,,, J
£
S
8 LAMINAR FLOW CIRCULATION IN A ROTATING
é TANK WITH A SPINNING COVER
vl
7
« ;
|| Hans J. Lugt, Henry J. Haussling, Samuel Ohring
E: .
B
=
B
]
Z
o
2 Approved for public release; distribution unlimited.
B =
Q
®
=
: 00 1011 9 0Ll
Q |
|
5’-1 COMPUTATION AND MATHEMATICS DEPARTMEN’T
O
s
O
FiNDARY
' % fo t B Hfa ﬁ i
&
& Jult 80 1972 |
Z February 1972 Report 3797
=L 1. S. NAVAL ACADEMY S
RR




The Naval Ship Research and Development Center {8 a U. 8. Navy center for laboratory
effort directed at achieving improved ses end air vehicles. It was formed in March 1967 by
merging the David Taylor Mode! Basain at Cerderock, Meryland with the Marine Engineering
Laboretory ot Annepolis, Marylend

Naval Ship Research and Development Center
Bethesds, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

NSROC
COMMANDER
TECHNICAL DIRECTORm

® REPORT ORIGINATOR

OFFICER-IN-CHARGE OF FICER-IN-CHARGE
CARDEROCK ANNAPOLIS
SYSTEMS
DEVELOPMENT -
DEPARTMENT
SHIP PERFORMANCE AVIATION AND
PR THENT SURFACE EFFECTS
15 DEPARTMENT
STRUCTURES * COMZ%E‘;‘?TNIC
DEPARTMENT AND M S

17 DEPARTMENT "

PROPULSION AND

SHIP ACOUSTICS AUXILIARY SYSTEMS

DEPARTMENT DEPARTMENT
7
CENTRAL
MATERIALS
DEPARTMENT INSTRUMENTATION
DEPARTMENT

NDW-NSRDC 3960/44 (REV. 8/71)
GPO 917-872




DEPARTMENT OF THE NAVY
" NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
‘ Bethesda, Md. 20034

LAMINAR FLOW CIRCULATION IN A
ROTATING TANK WITH'A
SPINNING COVER S

. by.

Hans J. Lugt, Henry.J. Haussling, Samuel Ohring

Approved for public release; distribution unlimited.

COMPUTATION AND MATHEMATICS DEPARTMENT

February 1972 Report 3797




TABLE OF CONTENTS

ABSTRACT . .ttt ittttnernessracansssacansasanes
ADMINISTRATIVE INFORMATION.......... foresaen .
INTRODUCTION ...cvvieennnonenannn teesen trseseennnne
FORMULATION OF THE INITIAL-BOUNDARY
VALUE PROBLEM...........
NUMERICAL INTEGRATION .. \uvrvvrnnneeennnnnnnens.
RESULTS ..o cvvieninnnen e tear e beeese ey
a. The Almost Steady Case........ berareee e
b. The Transient Case............ beesenecnasas v
CONCLUSIONS. .+t vvnvvnnninnnns e Ceeeiiens
ACKNOWLEDGMENT...... Paeee et tiesesecacancannns
REFERENCES........ P eceseesrent it a e esensyae

ii

12
12
30
41
43
43




LIST OF FIGURES AND TABLES

Page-
Figure 1. Grid system with 41 x 41 mesh points and
' stretching factors a=0.2, b=0.1...,....,.. 8
Figure 2. Lines of constant ¥, ¢ and v for 6 =1,
. _Ro=10 , Ek=0,01 andRo=10 , Ek=0, 001
at almost steady state . ...vse0vunne ceeens oo 15
Figure 3. Comparison of the Ekman solution with the

‘numerical results. —(v/r) o is plotted
Versusz.’.“."..’..’.._‘. ."...PO.....Q".... 17

Figuré 4, “Analytic and numerical results for the
Stewartson layer. -v is plotted versus r .
atZ-—% -tgotoopoont.ooonoo,no.notoooto.,. 19

Figuré 5. Analyuc and numerical results for the
' Stewartson layer. w is plotted versus r at

= LR A IR I 2L I B B R A B I B Y Y I B R A I I Y I I 20

Figure 6. Lines of constant ¢, {, and v for Ro = 1,
6=1, Ek = 0,01 and Ek = 0.0025 at almost
Steadystate -Q'IO;LQ.IOQl.’.ﬂ.."...ll"...ll,. 22

Figure 7. Lines of constant Y, {, and v for Ro=1,
&="1, Ek = 0.00125 and Ek = 0. 001 at
almoststeadystate ..... sesesssseerercsrrees 23
Figure 8. Lines of constant §, {, and v for Ro = 1,

~6=1, Ek = 0,0002 and Ro = 10, 6=1,
“Ek = 001ata1moststeadystate ceeonsearaess 24

Figur'é 9. Lines of constant ¥, £, and v for Ro = 4,
~8=1, Ek = 0,01 and Ek = 0.004 at almost
Steadystatei ..!Q.Q."'ll'.‘.’!ll.'.l'lto.n." 25

Figure 10, = Lines of constant Y, {, and v for Ro =1,
Ek =0.01, 6 =3 and 6= 1/3 at almost
steadystate.....,............ ..... cerreen . 26

Figure 11, Lines of constant p, {, and v for Ro = 1
Ek = 0,001, 6=3 at almost steady state .,.... 27

iii




Figure 12,

Figure 13.
Flgure 14,
Figure 15,
Figure 16,
Figure 17,

Figure 18.
Figure 19,
Figure 20,

Figure 21,

Figure 22,

-(v/r) r=0 252 function of z for various 6 ...

Pathline for Ro = 1, Ek = 0,0002, 6=1,

Perspective view at almost steady state .
- —(a v/az) as a function of 1-r for
var1ousRo, Ek and6 ,..

Lines of constant § and v for Ro = 10~ -5
Ek =0,001, 6=1 at various t. The almost

steady state at tory AL = 103 is included in
Figurez “D 9.000090‘0'..‘.OT‘..S...OfGO'.
—(C/r) at bottom and cover as a function

Cof t for Ro = 107° , Ek =0,001, 6=1........

-(¢/r) =0 ‘at bottom and cvov'e‘ras a function

“of t for Ro= 10 , Ek=0.,01, 6=1, ,..... .

'-(v/r)r=0 at z =% as afunction of t for

. Ro=10"5, 6=1, Ek =0.001 and 0.0L.........

Lines of constant § and v for Ro = 1,
Ek = 0.001, 6=1 at various t. The almost

‘steady state at t = 102 is included

FINAL
in Figure 7.. ceceesenesssonances peseans

Lines of constant i for Ro =1, Ek = 0.0002
6=1-at various t. The almost steady state
at tFINAL 245 is included in Figure 8...,..

Lines of constant v for Ro =1, Ek =0, 0002

6= 1 at various t. The almost steady state
at tFINAL =245 1s 1ncluded in F1gure 8. .o

" Lines of constant tp , I:, and v for Ro = 10,

Ek = 0.01, 6=1 at various t. The almost

. steady. state at t = 50 is 1ncluded in

FINAL :
Flgure8a-oooeooooocoooooolo.oooonoolo!iii

‘iv

Page

|

28

29 -

31

33
34
35

37

39

40

42



Page

——e

Table 1, * Compilation of the Calculated Examples..,..,. 13

Table 2.  Data for the §, {, and v Patterns in"
the Figuresv',Q-"o'vlt.DOPQRQrro‘grW"gooopo-opqoo. 16

W




NOTATION
A,B,C,D,E ., - Abbreviations introduced in Equation (18)
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c © - +» - Constant -defined in Edﬁétion (29)
Ek Ekman number
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H Height of the tank
k Summation index
k Unit vector in the direction of rotation
L Radius of the tank
l,m Eigenvalues
p' Pressure
p Dimensionless pressure
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r', ¢, z' Cylindrical polar coordinates
r, ¢, z Dimensionless cylindrical polar coordinates
t' Time
t Dimensionless time U
u', v, w' Velocity components corresponding to r',¢,z’
u,v,w Dimensionless velocity components
o,B Abbreviations introduced in Equation (18)
% Abbreviation introduced in Egquation (28)
0 Ratic H/L
E Dimensionless vorticity vector
4 Azimuthal component of 2
n, 6 Stretched coordinates z, r
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Kinematic viscosity
Density
, T Abbreviations introduced in Egquation (28)

Function introduced in Equation (28)

v
e

o

) Dimensionless stream function
X

Q Angular velocity of the tank

Q

Angular velocity of the cover

w = Q-Qc

Sub- and Superscripts:
i,j Location of grid point in the (n, 6)-plane

n Location of grid point in time
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ABSTRACT

" A study has been made of axisymmetric
incompressible fluid flows in a rotating tank when the
angular speed of the cover changes abruptly. From
the initial solid—body rotation a meridional and an
azimuthal circulation relative to the moving tank
develop. This problem is solved numerically by
means of a stream function-vorticity formulation
for the meridional flow. Local fine grids are used
in the Ekman and Stewartson layers. No finite gap
b’etween}tank and cover is considered. The singular

" behavior at this point is ihvestigated. The parameters
considered are the Rossby number, the Ekman

" number, and the ratio of height to radius of the tank.
Temporal and spatial oscillations of the laminar |
flow field as well as the occurrence of cell flows are

discussed."
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1. INTRODUCTION

In recent years the study of rotating fluids has found widespread
interest from both the' theoretical and practical point of view.
Applications of this subject range from lubrication problems to
centrifuge design to geophysical questions. Physically, rotating
fluids can behave quite differently from nonrotating ones, a fact which
has important mathematical implications. In the Computation and
Mathematics Department the program to simulate viscous fluid flows
by means of computers includes the‘study of rotating fluids. ‘The
present analysis is an outgrowth of this effort.

We consider the following laminar flow problem. A circular-
cylindrical tank, completely filled with an incompressible fluid, is
rotating around its axis with a constant angular velocity. The cover
is a disk which can rotate co-axially with the tank but at a different
rate. Initially, both tank and cover rotate with the same angular
velocity, and the fluid inside behaves as a solid body. At a certain
instant, the angular speed of the cover abruptly changes to a rate
which is different from that of the tank. As a result, a meridional
and an azimuthal circulation relative to the moving tank develop with
time and approach asymptotically a steady state. A numerical
computation of this flow is the subject of the present study.

A number of finite-difference solutions, obtained with the
stream function-vorticity formulation for the meridional flow, have
recently been published in the literature. Steady-state integrals for
flows within a fixed tank with a spinning cover were found by |

Dorfman and Romamenko1 and by Pac’. The steady motions in a

References are listed on page 43.



rotating tank with a fixed cover were studied by Pao® and by

Farris et'al4. Pao3 also computed the initial phase of the flows

after the abrupt change of the cover's rotational speed. Flows

with sources and sinks on the boundaries were investigated by

Farris et al4 for the steady-state case and by Krauses for the
transient case. Small deviations from solid-body rotation allow the
linearization of the equations of motion., This approaoh was chosen

by Rasmussen®. The spin-up and spin-down of a cylindrical tank
without relative rotation of the cover was studied by Briley and Walls .

A wealth of literature exists for limiting cases which permit
similarity assumptiohs or the use of p'erturbation méthdds. The
solutions obtained are valuable as a means of checking the accuracy
of the numerical techniques. Older papers are recorded in
Schlichting's book‘8,' newer papers in Greenspan's ‘monographg, In
particular, attention is called to the paper by Pearsonlo. The spin~up
and sp1n -down problems were stud1ed by Greenspan9 and by
Euteneuer et alll. Details of some of the papers are d1scussed in
context W1th our results, B _

The problem outlined 1n the beg'mmng of this sect1on 1s solved
by means of a stream funct1on vort1c1ty formulauon, The numerical
technique is essent1ally that presented by the authors in Reference. 12
Grid systems of 41x41 = 1681 and 51x51 = 2601 mesh points with
unequal spacing represent the flow f1eld Thus, local fine grids can
be used in regions with high vorticity grad1ents The parameters of
the problem are the Rossby number Ro, Ekman number Ek, and
the aspect rat1o § of the tank. _

The ass1gnment of values to these parameters is guided by the
objective of studying flows in a tank with nonvanishing angular speed.

It is of advantage to solve the equations of motion in a rotating frame



when studying the elliptic or hyperbolic flow behavior in space or in
time for small Rossby numbers. This can be seen immediately for
the linearized case, Ro = 0. Then the nondimensional vorticity
transport equation takes the form
22 3 2. 2.4 22 .o 2=
(——2—- 2EK —— Vv  + EkK v) v +(k-v)" ¢=0,

at

ot

where Kk is the unit vector in the direction of rotation. The other .
quantities are described in Section 2. When Ek is small the hyperbolic
form of the equation in time is revealed. For steady motions we

arrive at the Taylor-Proudman theorem if Ek = 09.

2. FORMULATION OF THE INITIAL-BOUNDARY
VALUE PROBLEM

We assume a laminar axisymmetric flow of an incompressible
fluid in a circular-cylihdrical fank of radius L and height H, ‘which
is spinning with constant angular velocity Q. At time t'=0 the
cover impulsivély starts to rotate with a different but constant
angular velocity @_. Cylindrical polar coordinates r', ¢, z' are
used with the corresponding velocity components u', v', w' ina
reference frame rotating with th'e‘ tank. Uhder the restriction of
axisymmetry, 3/3¢ =0, the Navier-Stokes equations and the equation
of continuity are - N

u'
- RS R 6

r'r

| v, 1
' ! t ‘ .
u' tu u' L +whu' L -v'(2Q+ k=~ =p' 4+’

v' ‘ A
v' +u‘v'r,+W'v'Z,+u'(ZQ+-r—,—) = v[v' r.+(*1:-.—)r' + V'Z.Zy] , (2)

r'



]

1 ‘
w' +uw ,twWw! -=p RV W Lt
A P rr

t’ W'Z'Z'], (3)

u' .
u'r' + T +w'z.' & 0 . (4)

Here, p!, p, and v are the pressure, the constant density, and the
constant kinemat'ic viscosity, respectively. ~ Prior to the sudden
change of rotation of the cover the entire fluid is at rest relat1ve to
the spinning tank: = _

t'<0: u'=0, v'=0, w'=0. (5)
After the change of rotation, t'z 0, the boundary conditions are

.z'=“0, Osr'js,L:Vu'=0, vi=0, w -’O
z'=H,0s<r'<L: u' =0, v
=L 0sz ' <H:u'=0, v

—wr,w-O N (6)
0, w=0,

L]

where w=Q- Q . It is convenient to introduce the following

dimensionless varlables
t'=t/Q, r'=Lr, z'=Hz, (u!,v")=wL(u,v), w'=wHw, p's= prsz (M

and the characteristic numbers .

Ro = % ‘('Rossby 'number),
Ek = % s (Ekman number), = (8)
5= I (aspect ratio),

The a.msymmetry of the motmn permits the stream function-vorticity
formulatmn of the mer1d1ona1 flow, If des1gnates the d1mens1on1ess

stream funct1on and ¢ the az1mutha1 component of the dimensionless




vorticity vector {, where

1 1
u""i‘.’d’z’w"”;wr: (9)
C=u'-62w , ’ ' (10)
Z r

Equations (1) through (4) are reduced to

€, *Ro[(u), + (W), -(——) 123, =k o cr%c -0+, ), (1)

vt+R0[(uv +(wv) +2-——]+2u = Ek[jb2 (vrr+—:‘;vr- -——) v, ] , (12)
1 .2 1 _
Tl 6 (‘brr "% lbr) +$,,1° C - (13)

The corresponding bAolind‘a‘ry'c‘.onditions for tz0 are
.z=0,0sr51: ,v ;p:o,gpz;o,v:o’
Z=v1‘,2OSI‘_SH:1: .‘b= 0, d)z=0’ vV = -T,

(19)
r=1, 02z < 1: zb=0,gbr=0,,v‘.=0,

r=0,0sz<1: =0, ¢ =0, v=0.

The last conditions for the values on the centerline follow from the
axisymmetry of the flow, which allows restriction to half the
meridional plane. o

At the corner r, = 1, z = -1 a discontinuity in v occurs which

. 4 AV
causes the shear stresses lim Vp( ) and lim vp(=— to
or .. _
r-1 z=1 z~1 r=1

be unbounded at that pomt In reality, a small gap between cover and
contalner always ex1sts Thus, this smgulamty is avoided. The

matter was d1scussed by Schm1eden13 for slow motion with no



meridional flow. If the gap is taken to be infinitesimal (as in this
work), the torques exerted on the cover and the tank are always
logarithmically singular. Although the singularity becomes more and
more localized with decreasing Ekman number, the torques are always
infinite. The implications for the finite-difference scheme are

discussed below.

3. NUMERICAL INTEGRATION

For finite-difference techniques it is of advantage to lé,y out a
network which is dense in regions of high vorticity gradients. Such
regions usually occur as boundary layers near solid walls. For the
present problem the following coordinate transformation is introduced:

r=g+asinw g, "
(15)
z=n-bsin2rn,
where the stretchihg factors a and b are chosen from thé intervals
0<a=0.26 and 0.10 sb =0.13. The region of integration is
represented by a grid with mesh points at 7= n; = (i-D)An, -

6= 6j= (j-1)A6, wherei,j=1,..,, 41 or 51, (See Figure 1.)

After the equations of motion are transformed accdrding to
Equation (15), they are solved with the following finite-difference
scheme. The linear differential operators of Equations (11) and
(12), except for the Coriolis terms, are replaced by the Dufort-
Frankel approximation. The term -2vz and the nonlinear operators

are expressed by central-difference formulae. Then, Equations (11)
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and (12) yield, for the.(n+1)th time step,

1 un cn » _un cIl
n+1 . -1 .n-1 i,j-1%1,j-1 "1, j+1%,j+1
i = (1 ZEkAtCi’j) {z;i,j +2At [Ro(a]. 3AD
n n n  _n n n .
ep -3 Vi ety Vg Tt -1,
i , 2An rj i An

n n
Vitel,j " Vi-1,

n .. n-1
+B an T BB g1t By 1.1 G 6 5

+Dc1+1,] Ec1 1,17 (16)

n n n n
e+l -1, n-1 Y,5-1"1,3-17Y%, j+1"4, j+1
i, =(1-2E z}.tCi j) {1,] +2At[Ro( 5 A0
W W, | |
+8 i"l:j i'l;j i'*‘l:l i+1Lj - 2 n n ) - 2u,
i 2An | T, i,] i, i,]

: ]

n1

+Ek(A +Bv i, j- 1-4-C i, i,] +Dvi_'_1 ]+Ev 1 ])]} (17)

ji, it

Here, the following abbreviations are used:

= 1 . 3.= 1
%= I+arcosmg; i~ T-Zrbcos2rn, °

g
]

. .+asin7m .
i =Y T8 » |
b, 2 1r262u3a sinm @ Gza. .

j A6 - 2A0 Zr].AG ¢

>
"

.. ba, 2. wzoza?a sin7m @, Gza.
B, =(—d) oA %)
] A6 2A6 Zr].AO ’




B v2 9p2 Y

2.3
ﬁi 2 2r Bi b sin 27 un

|

B. 2 Zﬂzﬁi3b sin 27 n
An

(18)

=
n
|
+

The velocity components of the meridional flow are obtained from

u =fi_ wi+l)j—¢i’19 W, "=_.aj ﬁ)j'*'l—wiyj"l (19)
1,7 T, 2487 ST R 2A 6 '

The Poisson-type Equation (13) is approximated by the five-

point formula which yields, for zj)i j?

1, Oa; 2

.1 j
4’i,j*§[(-z—) ( ) 1 [D ‘b1+1] E ¥, 1,3
3 2
5a 60!
+ (8- ;J—ﬁé):bl o1 (B * rJAe)wl 1775 50 - (20)

This system of algebralc equations is solved w1th Gauss-Seidel line
overrelaxation applied along lines of constant 6. The overrelaxation
factor is 1.78. The iteration is halted after the k'™ jteration if, at

each grid point,
N k k 1 -4, k-1
' <10 "y, .. 21

At the solid boundaries a one-sided first order difference equation is

used to compute the vorticity {. Two such egquations were tried, |

10




the s1mp1e one Whlch 1s used by most authors (at the bottom of the

tank, for 1nstance),
, o 2 "1 . , :
e S (@

e
3

and another, which was found in a study involving curved boundaries12

to be superior with regard to numerical stability,

1 31 y o
Cl,j = 71;; (_A_ﬂ) (¢2,j+ 44’3’ *b4 ). (23)

In this paper. Equatlon (23) is used although it showed no advantage
over Equation (22). B

- It can be seen from Equatlons (16) through (20) and Equat1on
(23) that the computations at the inner points do not requlre'knowledge
of quantities at the singular point.  (The subscript i+1,j+1 does not
appear in these equations.)

The integration process is carried out in the following way: The

vorticity C;Hjl ‘and subsequently the azimuthal velocity vn Jl are
. ty 1,

computed at the inner pointe according to Equations (16) and (1'7);
The calculation of a,b?? follows with the aid of Equation (20); The
) NEE .

cycle then concludes with the calculation of the surface vorticity.

The maximum stable time step, Atmax R be.yond which numerical
instability occurs, is determined by increasing the time step until
oscillations from point to point in the ¢-values appear.

The accuracy of the computations is checked by using different
space increments. This is easily done by varying the stretching
parameters a and b defined in Equation (15). It is found for the
two cases Ro=1, 6=1, Ek = 0.01 and 0.001 that solutions obtained

with different stretching values agree well except near the singular

11




point. The influence of this singularity on the solution is discussed
in Section‘ 4. Another way to change the space increments is to
vary the number of grid points. For Ro =1, Ek = 0.001 two grid
systems, 41 x 41 and 51 x 51, are used. The agreement is good.

4. RESULTS

As already noted, our main interest is focused on fluid motions
in a rotating tank, that is flows with Ro < » . The examples selected
for computation are compiled in Table 1. All cases are started
from solid-body rotation at t = 0 and are continued to an almost steady
state at t |

| » Where 't " is the earliest time at which

Fina Final

n n-1,. -4, n-1 _ :
.. -0 . |10 A 24
op - <t (29
is satisfied throughout the field. The computations were performed

in double precision on an IBM 360-91 computer and in single |

precision on a CDC 6700 computer. Pictures of the flow field were

made with a Stromberg- Carlson SC-4020 charactron plotter.

a. The Almost Steady Case

Two cases may be distinguished if the nonlinear inertial terms
are neglibible. For large Ekman nlimbers the pressure force is
essentially balanced only by the friction force (slow motion). For
Ro << Ek << 1 a balance is maintained among the Coriolis, friction,
and pressure forces.

Slow-motion solutions have been obtained by Hort14 for Ro =1,

6=1, Ek== ., Pao3 checked numerically for Ro =1, 6= 1 that the

12



TABLE 1
Compilation of the Calculated Examples

13

No. Ro - Ek & a b GRID

1 10° o001 1 0.2 0.1  4lx4l

2 107>  0.001 . 1 0.2 0.1

3 10°¢  0.01 1 0.2 0.1

4 1 0.01 1 0.0 0.1

5. 1 0.01 - 1 1 0.26  0.13

6 1 0.005 1 0.15 0.1

7 1 0.0025 1 0.2 0.1

8 1 . 0.00125 1 0.2 0.1

9 1 0.001 1 0.2 0.1

10 1 0.001 1 0,26 0,13 o

11 1 0. 001 1 0.0 0.0 ~ 51x51

12 1 0.0002 1 0.2 0.1  51x51

13 1 . .o0.01 '3 0.0 0.1 41x 41
‘ 14 1 0.001 3 0.2 0.1

15 1 o.01 1/2 0.2 0.1

16 1 0.01 1/3 0,2 0.1

17 4 0.01 1 0.2 0.1

18 4 0.004 1 0.2 0.1

19 10 0,01 1 0.2 0.1




slow-motion approkximation is applicable for 0.125 < Ek < = .

The linear theory predicts for the case Ro << Ek << 1 three
distinct regions: The Ekman layers at the cover and at the bottom of
the tank, the Stewartson layer at the side wall, and the geostrophic
interior, for which the Taylor-Proudman theorem of inviscid fluids
holvdsls‘. Numerical results verify this notion and reveal its
limitation. Figure 2 shows lines of constant Y, £, and v-values for
Ro=10"% Ek=0.01, 6=1 and for Ro = 10"°, Ek = 0.001, 6 = 1.
The increments of the ¢, £, and v-values are recorded in Table 2.
The case Ro = "10‘5, Ek = 0.001, in particular the lines of constant ¢,
illustrates clearly the existence of the three regions predicted by the
linear theory. Additional results obtained for Ro = 10'5, Ek = 0.01,
6= 1 agree so well with the case Ro = 10'4, Ek =0.01, 6=1 that
the patterns are indistinguishable. The increase of the Ekman
number from 0.001 to 0.01 shows that the (almost) inviscid interior
has vanished. If we neglect the influence of the side wall, an analytic
solution from the linear theory is available.  This is the well-known
Ekman solution. ' In Figure 3 the numerical values for: v at the
centerline r = 0 are compared with those of the Ekman solution.
Again, the analytic values agree well with the numerical output for
Ek = 0.001, whereas for Ek = 0.01 the numerical data reveal the
influence of the side wall. A distinct asymmetry is displayed between
cover and bottom for Ek = 0.01, -

The Stewartson layer at the side wall is studied with a
perturbation method9 and compared with the numerical output. Two
different layers, one inside the other, must be distinguished: a

1/3

layer of thickness Ekl/ 4, and a layer of thickness Ek inside the

first layer and adjacent to the wall. The Ekl/4 -layer is represented

14
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TABLE 2
Data for the ¢, {, and v Patterns in the Figures

\ Sign of ¥ Sign of
No. | Figure | Near r=1,z=1 Ay jonthe Cover | A{ | AV
2 2 - 0.001 - 1.00] 0.05
3 2 - 0.001 - 0.25] 0.05
5 6 - 0.001 - 0.25] 0.05
7 6 - 0.001 - 0.25] 0.05
8 7 - 0.001 - 0.50] 0.05
10 7 - 0.001 - 0.50] 0.05
12 8 - 0.001 - 1.00] 0.05
19 8 + 0.001 + 0.50| 0.05
17 9 + 0.001 + 0.25| 0.05
18 9 + 0.001 + 0.25] 0.05
13 10 - 0.0001 - 0.25| 0.05
16 10 - 0.001 - 0.25| 0.05
14 11 - 0.001 - 0.50| 0.05
2 15 - 0.001 - -- ] 0.05
10 19 - 0.001 - -~ 10.05
12 20 - 0.001 - S
12 21 - 0.001 - -- | 0.05
19 22 + 0.001 + 0.50{ 0.05

The stream function ) is specified to be zero at the boundaries. The
vorticity { is zero on the centerline. The azimuthal velocity v

is zero at all boundaries except at the cover, where v = -r.
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Ro K Ek
o =1

Figure 3 - Comparison of the Ekman Solution with
the Numerical Results. —(v/r)r=0 is
Plotted versus z, "
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by a closed-form solution, whereas the Ek1/3-1ayer must be
expressed by a series expansion. For simplicity, the velocity

components are presented for 6= 1:

1..1/2 -Be 1172 =
u=g Ek e -3 Ek z (xk)'r'r cos knz, (25)
v=-£+—1— e"/‘zc"+Ek1/6 $ x_ coskrmz, (26)
) = Xy
k=1
1 12 1 1/4 1, 2¢
w-——-z—Ek - % Ek (z-é—)e
+ Ekl/6 T Xy sin knz , 27
k=1
where
.k 2 B Yel2 T
xk—(-l) Ekn 7k81n(~§—7k7)e ,
o =(-n/Et | - -n/ml/?
v = (xm (28)

The first term in v and w is the geostrophic mode of the interior.
In Figures 4 and 5 the v- and w-components are plotted against r.
The numerical results are compared with the analytic data for

a) the geostrophic mode and the Ekl/ 4—law, and b) the geostrophic
mode, the Ek‘l/ 4—law, and the first two nonzero terms of the

Ekl/ 3—series. For the v-component both analytic curves are m éé'od
agreement with the numerical data. For the w-component the

Ekl/ 4-law alone is insufficient to describe the Stewartson layer. In
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Figure 4 - Analytic and Numerical Results for the Stewartson
Layer. -v is Plotted Versus r at z.= 1/2
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Figure 5 - Analytic and Numerical Results for the

Stewartson Layer,

w 1s Plotted
Versus r at z = 1/2
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1/4

The inclusion of the nonlinear terms into the equations of

fact, at z = 1 , the contribution of the Ek™’ "~-law vanishes.
motion modifies the flow characteristics. Figures 6 through 8
show flow patterns for Ro =1, 6 = 1, and various Ek. The output
for Ek = 0.01 can be compared with Pao's computation3. The
overall streamline patterns agree well with each other, although
deviations occur near the singular point. This problem is discussed .
in more detail below. In Figures 8 and 9 flow patterns are displayed
for Ro = 10 and 4, 6 = 1, and two different Ekman numbers. Cell-
type motions occur which are expected around Ro = 4 according to
similarity solutions17. Results in Figures 10 through 12 exhibit the
effect of various 6, In the limit 6~ 0 the solutions approach the
similarity solutions obtained by Lance and Rogersl5. This is
demonstrated in Figure 12 by a graph of -v/r versus z atr =0.

The results for different Ro, Ek, 6 have one common feature.
Below a certain value of the Ekman number,, spatial undulations of
the streamlines occur indicating the transition from an elliptic-type
to a hyperbolic~type solution. This distinction is most apparent in
the two linear cases discussed at the beginning of this section. The
slow-motion solution is clearly elliptic, whereas the Ekman solution
and the geostrophic mode are parabolic (as an asymptotic limit of
the hyperbolic time-dependent flow). For Ro =1, 6=1 the critical
Ekman number, at which the transition occurs, is 0.005. This
value decreases for Ro > 1 and increases for Ro < 1. Variation of
6 appears to have only a minor effect on the value of the critical
Ekman number.

In Figure 13 a pathline is displayed for Ro = 1, Ek = 0. 0002 ,
6= 1 in the rotating frame. The starting point is arbitrarily chosen
at r = 0,489, z = 0.959. The fluid particle follows a trajectory which

21




U, °3e3s 4peels 3Isowre I® G700°0 = AY pue - :
‘L .8 o.u#m .HH u._m..ﬁnom .ﬂ.uow>vﬂw..u.a uﬂmumaouuc wmn.ﬁ.—...lw wkﬁwﬁw __,A

S2000 - ¥

100 - %3

22



621000 - M3

@31elg Apee3s jsoute 3B Q00 = J4 pue

STT00°0 = AT ‘I = ¢ ‘T = 0§ 303 A pue ‘3 ‘4 jJueisuo) jo seur] - [ 2an3rg

A

28



@3els Apeels 1soure 18 70°0 = % ‘T = ¢ ‘0T = 0¥ pue
Z000°0 = N ‘T =9 °T = 0¥ 03 A pue ‘2 ‘4 Jue3isuoh 3O souy] - § 2In3rg

A ) o y

100 = %3
‘oT = 0¥

20000 = %3
‘1=0Y

24



7000 =43

00=43|

93e3g Apee3g isowfe I $00°0 = I pue

T0°0 = 4 ‘T = 9 ‘% = 0§ 30 A pue ‘2 ‘h queiasuo)y jo Sauy] - 6 2In8rg

A

R N

S ———

l

&

25







<

U/
Qx

Figure 11 - Lines of Constant y, L, and v for Ro = 1, Ek = 0.001, 6 =3
at almost Steady State




Al

]

1/2
6=3

/
Py LD

/

10

—(v/r)r_ as a Function of z for ¥arious §







consists of a downward spiral with almost no radial variation and
an upward spiral near the side wall with only one revolution. The
time for the particle to return to the vicinity of its initial position
is about 22 revolutions of the tank (t = 140).

The singularity of the flow at r = 1, z = 1 requires special

attention. In Figure 14 the function - % -—Z—‘Zl—) . is plotted against
zZ=

(1-r) on a double-logarithmic scale for various values of Ro, Ek, and
6. The dimensional quantity 3v'/az' becomes unbounded at the

singular point (r' = L, 2' = H) according to

lim - (2% - ¢ L";,, ¢~ 0.73, (29)
where c¢ does not depend on Ro, Ek, or 6. Hence, the singularity

is a local effect which can be considered in a numerical scheme by
building in a local series expansion. On the other hand, the torgques
exerted on the cover and the wall are always logarithmically singular.
Figure 14 reveals that for Ro =1, Ek = 0.01 the grid system with

a=0, b=0.1 gives a poor representation of the near-corner region.

b. The Transient Case

Unsteady rotating flows exhibit parabolic or hyperbolic
properties in time. The slow-motion solution14, for example, is
a pure diffusion process and is, thus, parabolic. The linear theory
of inviscid flow, in which the pressure gradient, the Coriolis force,
and the local acceleration balance each other, reveals flows of
hyperbolic naturego This can be seen immediately for the vorticity
equation cited in the introduction. If Ek = 0, an infinite but countable

number of modes can be obtained. Their frequencies are
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f = __2m , (30)

L2+ m2

where 4 and m are the eigenvalues for the r- and z-components,
respectively. The waves connected with these modes are called
"inertial waves”go The zero mode, which is time-independent,
represents the geostrophic motion.

Modifications of the inviscid flows occur in the Ekman and
Stewartson layers in order to satisfy the boundary condition of
no-slip. In Figure 15 a sequence of § - and v-patterns for Ro = 10—5,
Ek = 0,001, 6= 1 over the transient period is presented. A more
detailed time history for the same case is recorded in Figure 186,
where —(t/r)r_:o at the cover and at the bottom is plotted against
time. After the sudden change of the cover's angular speed, a
boundary layer on the cover develops whose -(¢ /r)r=0 -value reaches
a peak att = 1.5, This time agrees with the spin-up theory which
estimates t 1 for the initial phaseg. Afterwards, inertial
oscillations are visible. They appear in the streamline patterns in
the form of temporal oscillations and produce cell-type motions in
the center of the tank (Figure 15, t = 3.98, 9.98). With increasing
time the inertial oscillations are damped, the local cell vanishes,
anf the flow reaches a steady state. Both curves in Figure 16
approach asymptotically the value % Ek'l/ 2 - 15. 811 of the Ekman-
layer solution.

With increasing Ekman number the influence of viscosity is
felt in the interior. In Figure 17 the function -(I;‘/r)r‘_:0 at the
cover and at the bottom is plotted against time for Ro = 107° R
Ek = 0.01, 6= 1., Inertial oscillations have almost vanished. In
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Figure 18 the flow behavior away from the boundary layers is
1

displayed. The function -(v/r)rgo at z = 3 is plotted against time for
both Ek = 0.001 and Ek = 0.01 (Ro = 10-5, 6=1). Inertial oscillations
are observed only for the flow with the smaller Ekman number. No
single mode can be identified. This indicates the existence of nonzéroy
eigenvalues 4 in Equation (30).

As long as the Ekman number is sufficiently small, that is,

Ek << 0.01, inertial oscillaticns also occur if nonlinear effects are
present. For Ro =1, Ek = 0.00L, 6 = 1 a time sequence of y- and
v-patterns is shown in Figure 19. Again, a cell is visible in the center
of the tank as in the linear case Ro = 1070 , Ek = 0,001, A new
phenomenon in Figure 19 is the appearance of a local region of

positive v. Pao3 computed the case Ro=1, Ek = 0.00L upto t= 4.2,
His streamlines agree well with ours , but his picture does not show
the local cell at t = 4.2, :

For Ro =1, Ek = 0,001, 6= 1 a computer-generated movie
has been made which shows the tfansient stage for ¥ and v. The movie
clearly reveals the time oscillations which cannot easily be detected
in Figure 19.

Higher order modes are observed for decreasing Ekman
number. In Figures 20 and 21 the y- and v-patterns are displayed for
the transient period of the case Ro = 1, Ek = 0.90002,,3 6:% 1. Att=4.50
and 11.25 two cells at the centerline are visible. The whole sequence.
shows three distinct time periods when local cells are present. It
may be mentioned that Pa03 computed this case up to t = 3.0. His
strong undulations of the streamlines near the singular point are not

verified by cur calculations.
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Finally, a time sequence of constant ¢, , and v curves
is presented for Ro = 10, Ek = 0.01, 6= 1 in Figure 22. At this

‘high Rossby number the oscillations are shifted toward the sidewall.

5. CONCLUSIONS

Simple geometrical tank configurations with simple initial and
boundary conditions for the fluid inside can generate complicated flow
circulations. In the transient period inertial waves are visible in the
form of oscillating streamlines and cell motions without preferred
mode. In the steady-state case monotonic and undulating streamline
patterns are distinguished.

The numerical analysis which was developed for nonrotating
motion also works well for rotating flows with hyperbolic features. The
numerical calculations have been restricted to flows with Ek = 0. 0002
(for Ro = 1) since the assumption of axisymmetry does not seem to be
justified for smaller EK. |

The linear theory developed in literature on the basis of
perturbation methods is restricted for the case Ro << Ek << 1 to
Ek s 10—3 (for 6= 1) and for slow motion according to Reference 3 to
Ek > 0.125 (for Ro=1, 6= 1).

As 6 - 0 the computed values approach the similarity solutions
for two infinite disks.

The infinitely thin gap between side wall and cover causes a flow
singularity which, although local and very weak, results always in
an infinite torque. For practical applications a nonvanishing gap width
must be considered. The strength of the torque appears to depend

crucially on this width (see also Reference 13).
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